MATHEMATICS NUMBER CONTINUUM

NEXUS

Learning Continuum for Number

Overall Expectations for Phase 1 - Number
 represent quantities.

Overall Expectations for Phase 2 - Number

 model fractions and use fraction names in real-life situations.

Overall Expectations for Phase 3 - Number

 problems involving addition, subtraction, multiplication and division, using estimation strategies to check the reasonableness of their answers.

Overall Expectations for Phase 4 - Number

 use mental and written strategies to solve problems involving whole numbers, fractions and decimals in real-life situations, using a range of strategies to evaluate reasonableness of answers.

N-Y2		Nursery	Kindergarten	Year 1	Year 2
Place Value of Whole Numbers		- Recite number names in order to 10 , - Recognise numerals up to 10. - Compare and order numerals up to 10 . - Recognise groups of 0-5 objects without counting. (subitising) - Match numeral and quantity correctly with some numbers to10. - Compare groups of objects, more and less. - Count objects accurately. (1-1 correspondence)	- Place Value of Whole Numbers: - Recite number names in order to 20. - Read and write numerals up to 20. - Compare and order numerals up to 20. - Count objects accurately. (1-1 correspondence) - Match numeral and quantity correctly 1-10. - Find one more and one less than a group of objects and a given number. - Recognise groups of 0-10 objects without counting. (subitising)	- Say, read and write numerals up to 99 . - Compare (<,>,=) and order numerals up to 99. - Explain the value of each digit in a 2 digit number. - Demonstrate place value of 2 digit numbers in a variety of ways (eg. unifix cubes, base 10, abacus,). - Explain the expanding form of 2 digit numbers (eg. $97=90+7$). - Explain the relationship between the place value positions in 2 digit numbers (eg. 4 tens $=40,10$ ones $=1$ ten). - Write numbers to 10 in word form. - Read, write and use ordinal numbers up to 'tenth' and symbols (eg: 1st, 2nd, 3rd) - Recognise groups of 0-10 objects without counting (subitising)	- Say, read and write numerals up to 999. - Compare (<,>,=) and order numerals up to 999. - Explain the value of each digit in a 3 digit number. - Count forwards and backwards by 10 for any given number up to 999. (PF) - Demonstrate place value of 3 digit numbers in a variety of ways (eg. abacus, base 10). - Explain the expanding form of 3 digit numbers (eg. $897=800+90+7$). - Explain the relationship between the place value positions in 3 digit numbers (eg. 10 ones $=1$ ten, 40 tens $=400$). - Write numbers to 20 in word form.
Vocabulary		- Digit - Number - Total - All together - Counting on, - Counting back - More - Less - Equals: Answer, Makes	- Digit - Number - Total - All together - Counting on, - Counting back - More - Less - Equals: Answer, Makes	- More/Greater than - Fewer/Less than - Number sentence - Digit - Number - Value - Equals: Answer, Makes	- Predict/think.. - Greater than - Less than - Number sentence - Digit - Number - Value
Pattern \& Function (see also P\&F related to Problem Solving)			- Create, describe and extend simple patterns with objects.	- Understand the properties and associated number patterns of odd and even numbers to 20. - Explore the relationship between addition and subtraction (eg. fact families). - Identify and continue number patterns skip counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . - Count forwards and backwards in 1s and 10s using a 100 chart. (PF)	- Understand the properties and associated number patterns of odd and even numbers. - Explore the relationship between addition and subtraction (eg. fact families). - Follow and describe rules for number patterns and analyse patterns to make predictions and problem solve. - Create and extend number patterns, for example skip counting. (eg. 6, 9, 12 _, _, _,). - Use the vocabulary of comparing and ordering for balancing number sentences (eg $3+5=10$ - ?).
Vocabulary					
Addition	Mental Strategies		- Use vocabulary of addition in practical experiences. - Use manipulatives and visual representations to add single digit numbers, e.g. loose parts, number - lines, tens frame. - Explore number bonds to 5 .	- Using 10 s frames to show a visual representation of how numbers are added. (eg $13=10+3)$. - Automatically recall number bonds to 5 and work on and calculate numbers bonds to 10 . - Know doubles to 10 and apply to solve simple problems. For mental strategy development: - Using jump strategy to count up in 1 s from the largest number on a number line. (Explicit within strategies)	- Use tidy tens strategy with a two digit and 1 digit number with written recording. - Automatically recall number bonds to 10 and calculate number bonds to 20 . . - Use doubles and near doubles using the compensation strategy with numbers to 10 . (eg $8+9=8+8+1$) For mental strategy development: - In written form, use the jump strategy to mentally add a 1 digit number to a 2 digit number or pairs of 2 digit numbers using

Maths number Continuum - September 2023

				- In written form, use the jump strategy to mentally add a 1 digit number to a 2 digit number using standard and open number lines.	standard and open number lines.
	Written Strategies			- Write a linear number sentence using the addition and equal sign. - Identify key vocabulary in word problems and solve 1 step addition calculations.	- Independently write a linear addition number sentence. - Use vertical column addition to add 2 digit numbers without regrouping. - Appropriately set out vertical column addition calculations and add starting at the ones column. - Identify key vocabulary in word problems and solve 1 step addition calculations.
Vocabulary			- I estimate... - Number sentence - Digit - Number - Total - All together - Plus (for the symbol) - Counting on, - Equals: Answer, Makes	- Total - All together - Plus (for the symbol) - Counting on	- Total - All together - Plus (for the symbol) - Counting on
Subtraction	Mental Strategies		- Use vocabulary of subtraction in practical experiences. - Use manipulatives and visual representations to takeaway single digit numbers, e.g. loose parts, number lines, tens frame.	- Understand and use vocabulary associated with subtraction. - Understand that subtraction must start with the largest number. For mental strategy development: - With visual scaffolding, use a number line to calculate simple subtraction problems. - Identify key vocabulary in word problems and solve 1 step subtraction calculations - using manipulatives.	- Understand and use vocabulary associated with subtraction. - Understand and explain why subtraction must start with the largest number. - Mentally subtract within 10. For mental strategy development: - In the written form, use a standard and open number lines to subtract. - With visual scaffolding, mentally subtract a 1 digit number from a 2 digit number using 'tidy tens' (eg. 12-3 is the same as 12-2-1).
	Written Strategies				- Independently write a linear subtraction number sentence. - Use vertical column method to subtract 2 digit numbers without regrouping. - Appropriately set out vertical column subtraction calculations and subtract starting at the ones column. - Identify key vocabulary in word problems and solve 1 step subtraction calculations.
Vocabulary			- Take away - Minus (for the symbol) - Counting back - Less - Equal: Answer, makes	- Take away - Minus (for the symbol) - Counting back - Difference between	- Take away - Minus (for the symbol) - Counting back - Difference between
Multiplication	Mental Strategies			- Use pictures, and manipulatives to demonstrate an understanding that multiplication is - equal grouping. - Recognise and explain that multiplication is repeated addition.	- Use pictures, arrays, number lines and manipulatives (<20 objects) to demonstrate an understanding that multiplication is equal grouping. - Recognise and explain that multiplication is repeated addition. (PF)

Maths number Continuum - September 2023

					- Solve 1 step word problems with multiplication using drawings and manipulatives.
	Written Strategies				
Vocabulary				- Lots/Groups of	- Multiply - Lots/Groups of - Times - Arrays
Division	Mental Strategies			- Model and explain the concept of sharing into equal groups using manipulatives. - Use pictures, and manipulatives (<12 objects) to model division as equal groups.	- Model and explain the concept of sharing into equal groups using manipulatives. - Use pictures, arrays, number lines and manipulatives (<20 objects) to model division as equal groups. - Solve 1 step word problems with division using drawings and manipulatives.
	Written Strategies				
Vocabulary				- Sharing - Equal groups - Lots/Groups of	- Lots/Groups of - Equal
Fractions			- In practical experiences demonstrate an understanding of half.	- Identify parts as equal or unequal. - Understand a fraction is an equal part of a whole. - Demonstrate an understanding of $1 / 2$ and $1 / 4$ of a whole. - Demonstrate an understanding of $1 / 2$ and $1 / 4$ of a group.	- Understand and explain that fractions are an equal part of a whole. - Demonstrate an understanding by drawing and shading $1 / 2,1 / 3,1 / 4,1 / 8$ of objects. - Use manipulatives to demonstrate $1 / 2,1 / 3,1 / 4$ of a group. - Compare and order $1 / 2,1 / 3,1 / 4,1 / 8$ using visual representations.
Vocabulary			- Share - Half - Whole	- Share - Divide (NOT division) - Half - Whole - Quarter - '(Parts) Out of ...'	
Place Value of Decimals					
Vocabulary					
Pattern and Function (see also P\&F-related to number)	Problem Solving Strategies			- Identify key words in a question or statement. - Construct a number sentence. - Use a variety of mathematical language to describe operations and processes. - Distinguish between relevant and irrelevant information in a question. - Understand, explain, use and apply the following strategies to assist problem solving: - Draw pictures to represent information given in a problem to assist with finding a solution. - Use or create models to assist with solving problems. - Check solutions for their reasonableness with teacher guidance	- Identify key words in a question or statement. - Construct a number sentence. - Use a variety of mathematical language to describe operations and processes. - Distinguish between relevant and irrelevant information in a question. - Understand, explain, use and apply the following strategies to assist problem solving: - Draw pictures to represent information given in a problem to assist with finding a solution. - Use or create models to assist with solving problems. - Check solutions for their reasonableness with teacher guidance.

Y3-Y6		Year 3	Year 4	Year 5	Year 6
Place Value of Whole Numbers		- Say, read and write numerals up to 9999. - Compare (<,>,=) and order numerals up 9 999. - Explain the value of each digit in a 4 digit number. - Count forwards and backwards by 10 and 100s for any given number up to 9,999 . (PF) - Demonstrate place value of 4 digit numbers in a variety of ways. (eg. number line, abacus, base 10). - Explain the expanding form of 4 digit numbers. (eg. $3,897=3,000+800+90+7$). - Explain the relationship between the place value positions in 4 digit numbers (eg. 10 ones $=1$ ten; 40 tens $=400$). - Explain how many 10s in 100 s (eg. How many 10s in 400). - Write numbers to 100 in word form.	- Say, read and write numerals up to 99,999. - Compare and order numerals up 99, 999. - Explain the value of each digit in a 5 digit number. - Count forward and backwards in multiples of 10 s from any number. - Demonstrate place value of 5 digit numbers in a variety of practical ways. (eg. number line, abacus, base 10). - Explain the expanding form of 5 digit numbers. (eg $14532=10000+4000+500$ $+30+2$). - Explain the relationship between the place value positions with reference to ' 10 times bigger' or ' - 10 times smaller'. - Explain how many 10 s in 100,1000 or their multiples (eg. How many 10s in 400). - Find the mid-point multiples of 10 (eg Midpoint of 40 and $50=45$) - Estimate accurately the position of a number on a number line. eg 13375 on a number line demarcated into thousands. - Round numbers to the nearest 10 and 100.	- Say, read and write numerals up to 999,999. - Compare (<,>,=) and order numerals up 999,999. - Count forwards and backwards in powers of 10 , for any given number up to 999,999 . (eg. count backwards in 10,000s from 542,003). (PF) - Explain the place value of each digit for numbers up to 1,000,000. - Demonstrate place value of 6 digit numbers on a numberline. - Explain the expanded form of 6 digit numbers, saying the value of each digit. (eg. $142,867=100,000+40,000+2,000+800+$ $60+7$). - Know how many tens and hundreds are in a 4 digit number. (eg. 3,400 is 34 hundreds). - Round any whole number up to $1,000,000$ to the nearest $10,100,1,000,10,000$ and 100,000	- Say, read and write numeral up to $9,999,999$. - Compare (<,>,=) and order numerals up 9,999,999. - Explain the value of each digit in a 7 digit number. - Count forwards and backwards in powers of 10 for any given number up to 9,999,999. (eg. Count forwards in 10,000s from 743,245). (PF) - Demonstrate place value of 7 digit numbers on a numberline. - Explain the expanding form of 7 digit numbers. (eg. 6,453,897 $=6,000,000+$ $400,000+3,000+800+90+7)$. - Know how many ten, hundreds, thousands are in a 5 digit number. (eg. 33,400 is 334 hundreds). - Compare and order negative numbers on a number line. - Count backwards and forwards with negative whole numbers, including through zero.
Vocabulary		- digit - numeral - expanded form - standard form - rounding - mid-points and benchmarks - approximating - place value - place value columns - place value grid. - Ten Thousands - Thousands - Hundreds Tens - Ones	- digit - numeral - expanded form - standard form - rounding - mid-points and benchmarks - approximating - place value - place value columns - place value grid. - Ten Thousands - Thousands - Hundreds Tens - Ones	- digit - numeral - expanded form - rounding - approximating - place value - Hundred Thousands, Ten Thousands Thousands - Hundreds - Tens - Ones - partition	- digit - numeral - expanded form - rounding - mid-points and benchmarks - approximating - place value - place value columns - place value grid. - Ten Thousands - Thousands - Hundreds Tens - Ones - integers, negative numbers - base ten system
Place Value of Decimals	Decimal Numbers		- Recognise and explain that a decimal is a part of a whole. - Say, read and write decimals to 1 dp . - Understand and explain that a tenth can be represented as a fraction or in terms of it's place value as 0.1 - Identify the image of a tenth to it's written fraction form (1/10) to it's decimal form (0.1) and to the written fraction word (one tenth) and relate to the place value chart. - Order tenths on a number line. - Count forwards and backwards in tenths as fractions and decimal notations. - Give a number that is $1 / 10$ more or $1 / 10$ less on a decimal number line (Eg. 1/10 more	- Say, read and write decimals up to 2dp. - Compare (<,> =) and order decimals up to 2dp. - Count forwards and backwards in 10ths and 100ths. (PF) - Identify and understand visual representations (100 grid) of 10ths and 100ths and relate to a place value chart - Understand the relationship between decimal place value columns and their corresponding fraction. - Say the number 0.1 more, 0.1 more from any number. (PF) - Say the number 0.01 more, 0.01 less from any number. (PF)	- Say, read and write decimals up to 3dp. - Compare (<,> =) and order decimals up to 3dp. - Count forwards and backwards in thousandths, hundredths, tenths. (PF) - Say the number 0.1 more, 0.1 more from any number. (PF) - Say the number 0.01 more, 0.01 less from any number. (PF) - Round to the nearest whole number from a decimal number. - Round to the nearest tenth and hundredth. - Identify the image of a thousandth to it's written fraction form ($1 / 1000$), to it's decimal form (0.001), and to the written fraction word

Maths number Continuum - September 2023

Maths number Continuum - September 2023

		- > = <	- negative numbers - zero - > = < - square numbers (related to area)		- formula, rule - tenths, hundredths, - decimal point - place value column - place value chart - decimal number - to 1 decimal place
Addition	Mental Strategies	- Mentally use tidy tens strategy with a two digit and 1 digit number. - Mentally automatically recall and use number bonds to 20 . - Understand the relationship between the number bonds to 10 and adding multiples of 10. (eg 3+7=10 therefore $30+70=100)$ - Mentally use doubles and near doubles using the compensation strategy with numbers to 20. - (eg $14+15=14+14+1)$ For mental strategy development: - In the written form, use the Split strategy to mentally add pairs of 2 or 3 digit numbers without regrouping. - In the written form, use the Jump strategy to mentally add pairs of 2 or 3 digit numbers using a number - line. - Adding using jump and split strategies in written form up to 3 digits.	- Use and apply understanding of vocabulary associated with addition to written and verbal problems. - Recall, understand and use Number Bonds to 100. - Use number bonds in mental addition calculations (eg. $37+23$). - Understand the relationship between number bonds to 20 and adding multiples of 10 and 100 (eg. $13+7=20$ therefore $130+70=200$). - Mentally use knowledge of 'tidy tens' numbers when using the Jump strategy to add numbers. - Create addition and subtraction 'Fact Families'. - Mentally use the Split strategy to add pairs of 2 digit numbers . - Reorder lists of numbers to make tidy numbers to assist with addition. (eg. $12+19$ $+3+8+1=(12+8)+(19+1)+3$ For mental strategy development: - In the written form, use the Split strategy to mentally add pairs of 2 or 3 digit numbers. - In the written form, use the Jump strategy to mentally add pairs of 2 or 3 digit numbers using an open number line. - In the written form, use models such as 'number trees' and 'bar models' to assist use of split strategy to add 2 or 3 digit numbers.	- Recall, understand and use Number Bonds to 1000. - Choose from a broad range of mental strategies to solve problems involving whole numbers - Use split strategy when adding numbers with up to 4 digits. - Use jump strategy when adding numbers with up to 4 digits. - Use rounding and compensating strategy when adding numbers with up to 4 digits. - Use split strategy when adding numbers up to 1dp. - Use jump strategy when adding numbers up to 1dp. - Use tidy numbers strategy when adding numbers up to 1dp. - Use rounding and compensating strategy to add numbers up to 1dp. - Use reversibility to solve addition problems of whole numbers and decimal numbers with 'missing numbers' in the calculation. For mental strategy development: - In written form, use split strategy to add decimal numbers up to 2 dp . - In written form, use jump strategy to add decimal numbers up to 2dp. - In written form, use tidy numbers to add numbers up to 2dp. - In written form, use rounding and compensating to add numbers up to $2 d$ p.	- Choose efficient strategy to solve problems (agility of understanding numbers and which strategy is most suitable). Learners may not be proficient in using all strategies but have a repertoire to choose from. - Use split strategy when adding numbers in the ten thousands and thousands respectively. - Use jump strategy when adding numbers in the ten thousands and thousands respectively. - Use rounding and compensating strategy when adding numbers in the ten thousands and thousands respectively. - Find a difference between two negative or positive numbers using a number line. - Use split strategy when adding numbers up to 2dp. - Use jump strategy when adding numbers up to 2dp. - Use tidy numbers strategy when adding numbers up to 2dp. - Use rounding and compensating strategy when adding numbers up to 2dp. - Use reversibility strategy to solve addition problems of whole numbers and decimal numbers. For mental strategy development: - In written form, use split strategy when adding decimal numbers up to $3 d p$. - In written form, use jump strategy when adding decimal numbers up to 3dp. - In written form, use tidy numbers strategy when adding numbers up to 3 dp . - In written form, use rounding and compensating strategy when adding numbers up to 3 dp .
	Written Strategies	- Use vertical column addition to add 3 digit numbers with regrouping - Identify key vocabulary in word problems and solve 1 step addition calculations. - Use and apply appropriate addition strategies with 2 and 3 digit numbers in problem solving situations.	- Use written Vertical column addition using regrouping numbers using 3 and 4 digit numbers. - Use and apply appropriate addition strategies with 3 and 4 digit numbers in problem-solving situations. - Use rounding to assess the reasonableness of solutions to addition problems.	- Use a written strategy (vertical column) to add numbers including regrouping numbers across zeros using up to 5 digits - Use a written strategy (vertical column) to add decimal numbers, including tenths and hundredths e.g. 75.7 + 92.05	
Vocabulary		Operation Vocabulary: - addition - plus	Operation Vocabulary: - addition - plus	Operation Vocabulary: - subtract - minus - decrease	Operation Vocabulary - addition - plus - total

Maths number Continuum - September 2023

		- total - sum - altogether - increase by - greater than - more than Strategy Vocabulary: - number bonds - tidy numbers - reorder - split strategy - jump strategy - vertical column method Process Vocabulary: - partition a number = splitting a number - exchange - regroup Models and Tools: - Number trees - Bar models - Tidy numbers - Addition + subtraction fact families - Number sentence	- total - sum - altogether - increase by - greater than - more than Strategy Vocabulary: - number bonds - tidy numbers - reorder - split strategy - jump strategy - vertical column method Process Vocabulary: - partition a number = splitting a number - exchange - regroup Models and Tools: - Number trees - Bar models - Tidy numbers - Addition + subtraction fact families - Number sentence	- less than - fewer than Strategy Vocabulary: - Jump strategy - split strategy - compensation strategy - 'tidy numbers' - reversibility - 'inverse' - Vertical column method Process Vocabulary: - exchange - regroup	- sum - altogether - increase by - greater than - more than - difference - partition Strategy Vocabulary: - number bonds - tidy numbers - reorder - split strategy - jump strategy - vertical column method - rounding and compensating strategy Process Vocabulary: - partition a number = splitting a number - exchange - regroup Models and Tools: - Number line - Number trees - Bar models - Tidy numbers - Addition + subtraction fact families - Number sentence - Equation
Subtraction	Mental Strategies	- Understand and use vocabulary associated with subtraction. - Mentally use subtraction within 20. For mental strategy development: - Use and apply appropriate subtraction strategies with 3 and 4 digit numbers in problem solving situations. - Subtract using the jump strategy up to 3 digits using an open number line. - With visual scaffolding, mentally subtract a 2 digit number from a 2 digit number using 'tidy tens' (eg. 21-13 is the same as 21-1-102).	- Understand and use vocabulary associated with subtraction. - Use number bonds in mental subtraction of 2 digit calculations. - Mentally subtract numbers from 100 using number bond knowledge (eg. 100-27 = 73). - Understand and explain that subtraction is the reverse operation to addition. - Understand that the significance of the order of the numbers in a subtraction calculation. - Reorder lists of numbers to make 'tidy numbers' to assist with subtraction (eg. 56 -$48=[(56-6)-2]-40$ For mental strategy development: - In the written form, subtract 3 digit numbers using the jump strategy on an open number line. - In the written form. subtract 2 digit numbers using the jump strategy using 'tidy tens'.	- Choose efficient strategy to solve problems (agility of understanding numbers and which strategy is most suitable). - Use jump strategy to subtract numbers numbers with up to 4 digits - Use rounding and compensating strategy to subtract numbers with up to 4 digits. - Use reversibility (counting on) strategy to subtract numbers which are close together. - Use tidy numbers strategy when subtracting numbers up to 1dp. For mental strategy development: - In written form, use jump strategy to subtract numbers up to 1dp. - Use reversibility (counting on) to subtract numbers with up to 4 digits. - Use rounding and compensating strategy to subtract numbers up to 1 dp . - In written form, use tidy numbers strategy when subtracting numbers up to 1dp.	- Choose efficient strategy to solve problems (agility of understanding numbers and which strategy is most suitable). Learners may not be proficient in using all strategies but have a repertoire to choose from. - Use jump strategy when subtracting numbers in the ten thousands and thousands respectively. - Use rounding and compensating strategy when subtracting numbers in the ten thousands and thousands respectively. - Use equal additions strategy when subtracting numbers in the ten thousands and thousands respectively. - Use jump strategy when subtracting numbers up to 2 dp . - Use tidy numbers strategy when subtracting numbers up to 2dp. - Use rounding and compensating strategy when subtracting numbers up to 2 dp . - Use equal additions strategy when subtracting numbers up to 2dp. - Use reversibility strategy to solve subtraction problems of whole numbers and decimal numbers. For mental strategy development: - In written form, use jump strategy when subtracting decimal numbers up to 3dp.

					- In written form, use tidy numbers strategy when subtracting numbers up to 3dp. - In written form, use rounding and compensating strategy when subtracting numbers up to 3 dp .
	Written Strategies	- Use vertical column method to subtract 3 digit numbers. - Regrouping in subtraction but not across zeros (eg. 243-178). - 1 step problem solving with subtraction.	- Use and explain vertical column method for subtraction of 4 digit numbers, using regrouping. - Use the vertical column method to subtract 3 and 4 digit numbers across zeros. - (eg. 500-156 =.....) - Use and apply subtraction strategies in problem-solving situations using 4 digit numbers in one and 2 step - written problems. - Use rounding to assess the reasonableness of solutions to subtraction problems.	- Use a written strategy (vertical column) to subtract numbers including regrouping across zeros - Use a written strategy (vertical column) to subtract decimal numbers e.g. in the context of money	
Vocabulary		Operation Vocabulary: - subtract - take away - minus - decrease - less than - fewer than - difference - how many left Strategy Vocabulary: - Jump strategy - Vertical column method Process Vocabulary: - exchange - regroup Models and Tools Vocabulary: - 'tidy tens' (multiples of 10 to bridge) - number sentences - Addition + Subtraction fact families	Operation Vocabulary: - subtract - take away - minus - decrease - less than - fewer than - difference - how many left Strategy Vocabulary: - Jump strategy - Vertical column method Process Vocabulary: - exchange - regroup Models and Tools Vocabulary: - 'tidy tens' (multiples of 10 to bridge) - number sentences - Addition + Subtraction fact families	Operation Vocabulary: - subtract - minus - decrease - less than - fewer than - difference between Strategy Vocabulary: - Jump strategy - rounding and compensating - reversibility (counting on) - Vertical column method Process Vocabulary: - exchange - regroup	Operation Vocabulary: - subtract - take away - minus - decrease - less than - fewer than - difference - how many left - partition Strategy Vocabulary: - Jump strategy - Round and compensating strategy - Vertical column method - Equal addition strategy Process Vocabulary: - exchange - regroup Models and Tools Vocabulary: - 'tidy tens' (multiples of 10 to bridge) - number sentences - equation - Addition + subtraction fact families
Multiplication	Mental Strategies	- Use pictures, arrays, number lines and manipulatives to demonstrate an understanding of multiplication. - Recognise and explain that multiplication is repeated addition. (PF) - Recognise the commutative property of multiplication (eg. $2 \times 5=105 \times 2=10$). - Using fact families to explain the relationship between multiplication and division. - Use doubling as a strategy to solve multiplication problems. ($2 \times 4=8$ so $4 \times 4=$ 16). - Use automatic recall of facts in the $2,3,5$, and	- Use pictures, arrays, models and manipulatives to explain the concept of multiplication. - Use automatic recall of facts in the $2,3,4,5$, 6,9 and 10 multiplication tables. - Use known facts to solve unknown facts. (eg: knowing 6×5, be used can work out to 7×5) - Recognise and apply 'Fact Families' of multiplication + division to solve problems. (PF) - Multiply whole numbers by 10 and 100. - Mentally double 2 digit numbers where the ones and tens are 5 or lower (eg. $24 \times 2=48$).	- Understand and automatically recall all multiplication and division facts in the 2 to 12. ($7 x$ and $8 x$ tables introduced in Year 5). - Multiply numbers including decimals numbers by 10,100 , and 1,000 . - Multiply whole numbers by a multiple of ten (eg. $40 \times 7=4 \times 7 \times 10$ and $50 \times 200=10,000$) - Use split strategy to multiply 3 digits by 1 digit number mentally (eg. $142 \times 3=(100 \times 3)+(40$ $\mathrm{x} 3)+(2 \times 3)$ - Use rounding and compensating strategy to multiply numbers mentally, x 9, 11, 99, 101 - Double any 2 digit number	- Choose an efficient strategy to solve problems (agility of understanding numbers and which strategy is most suitable). Learners may not be proficient in using all strategies but have a repertoire to choose from. - Use split strategy to multiply a single digit number by a number with a decimal (eg. 5 x 2.3). - Use rounding and compensating strategy to multiply a single digit number by a number with a decimal (eg. 5×2.3). - Use split strategy to multiply 2 digits by 2 digit numbers up to 20 , (eg. 25×15).

Maths number Continuum - September 2023

		10 multiplication tables. - Solve 1 step word problems with multiplication. - Use their knowledge of grouping to solve multiplication problems. For mental strategy development: - Recognise the pattern for multiplying by 10 and 100. (PF)	- Demonstrate how square numbers are formed in context of area, - Recognise and find factors and multiples of numbers in known multiplication tables. For mental strategy development: - In the written form, use 'doubling' to assist with mental multiplication (eg. $9 \times 8=(9 \times 4)$ doubled. - In the written form, use the split strategy to mentally multiply 2 digit by 1 digit numbers [eg. $23 \times 2=(20 \times 2)+(3 \times 2)$. - In the written form, double 2 digit numbers in which the 'ones' place value digit is higher than 5 (eg. 17×2). - Choose and use mental strategies to solve real life multiplication problems.	- Use 'doubling' to assist with mental multiplication. (eg. $9 \times 8=(9 \times 4)$ doubled. - Use known facts to assist with mental multiplication (e.g. $14 \times 3=(14 \times 2)+14$	- Use doubling and halving / trebling and thirding to multiply up to 2 digits by 2 digit numbers. - Use split strategy to multiply 3 digits by a multiple of ten up to 100 (eg. $326 \times 20=$). - Use rounding and compensating strategy to multiply 3 digits by a multiple of ten up to 100 (eg. $326 \times 20=$).
	Written Strategies	- Use and explain the grid method to multiply a 2 or 3 digit numbers by a single digit from a known multiplication table. - Use the vertical column method to multiply a 2 or 3 digit numbers by a single digit from a known multiplication table. - Use multiplication strategies to solve written problems.	- Use and explain the grid method to multiply a 3 or 4 digit numbers by a single digit from a known multiplication table. - Use the vertical column method to multiply a 3 or 4 digit numbers by a single digit from a known multiplication table. - Use multiplication strategies to solve written problems.	- Use the vertical column method to multiply 2 digit by 2 digit numbers. - Use the grid method to multiply 3 digit by 2 digit numbers. - Use the lattice method to multiply 2 digit by 2 digit numbers. - Choose a preferred method to use as a written strategy for multiplication (by the end of the Year)	- Choose efficient strategy to solve problems (agility of understanding numbers and which strategy is most suitable). Learners may not be proficient in using all strategies but have a repertoire to choose from. - Use the vertical column calculation to multiply 3 digit by 2 digit numbers. - Use the grid method to multiply 3 digit by 2 digit numbers. - Use the lattice method to multiply 3 digit by 2 digit numbers.

Maths number Continuum - September 2023

		- vertical column method Process Vocabulary: - regroup - exchange - partition - split Models and Tools: - Multiplication fact families - Model bars - Grids - Number trees (Number Pyramid) - Multiplication tables	- vertical column method Process Vocabulary: - regroup - exchange - partition - split Models and Tools: - Multiplication fact families - Model bars - Grids - Number trees (Number Pyramid) - Multiplication tables	- grid method - vertical column method. Process Vocabulary: - regroup - exchange - partition - split Models and Tools: - Multiplication fact families - Model bars - Grids - Number trees - Multiplication tables	- factor - square numbers (in relation to Area) Multiplication Strategies Vocabulary: - arrays - split strategy - doubling and halving strategy - proportional adjustment - rounding and compensating strategy - grid method - vertical column method - vertical column calculation - lattice method Process Vocabulary: - regroup - exchange - partition - split Models and Tools: - Multiplication fact families - Bar models - Grids - Number lines - Number trees - Multiplication tables
Division	Mental Strategies	- Recognise and explain the relationship between multiplication and division. - Recognise and explain through drawings and use of manipulatives that division is separating a quantity into equal parts. - Use a number line to show the relationship between division and subtraction (eg. 20-5-5 $-5-5=0$). - Understanding that dividing by 2 is halving using numbers to 20 . - Solve 1 step word problems with division.	- Recognise and explain through drawings and use of manipulatives that division is repeated subtraction. - Understand and explain the concept of 'remainders' when dividing numbers. - Quick automatic recall of division facts in the 2 , $3,4,5$, and 10 multiplication tables. - Division by 10 to leave a whole number. eg. ($420 \div 10=42$). - Find half of the multiples of 10 (e.g. half of 50). - Find half of the even numbers by partitioning with numbers 50 . (eg. Half of $38 \ldots$ (eg. half of $30+$ (half of 8) - Explore, explain and use the divisibility rules for numbers within the 2, 3, 4, 5, 10 multiplication tables. - Use understanding of inverse operation to solve division problems (through fact families). For mental strategy development: - In the written form, find half of numbers below 100 when both tens and ones digit is an even number.	- Divide whole numbers by 10,100 , and 1,000 to leave a decimal to 2 dp . - Know divisibility test for multiples of 3, 4, 6 and 9 and apply knowledge when dividing. - Divide numbers mentally using split strategy and knowledge of grouping e.g. $39 \div 3=(30 \div$ 3) and ($9 \div 3$) - Use multiplication facts to solve mental division calculations e.g. $125 \div 5$ (Split 125 into groups of 5 . How many groups of 5 can be made) (20 groups of $5=100)(5 \times 5=25)$ so $125 \div 5=25$ - Find Halve any 2 digit number. - Find $1 / 4$ of a number by halving and halving again.	- Choose an efficient strategy to solve problems (agility of understanding numbers and which strategy is most suitable). Learners may not be proficient in using all strategies but have a repertoire to choose from. - Use split strategy to divide up to 3 digit numbers. - Divide numbers by $10,100,1000$ into decimals by shifting the digits, not the decimal point. - Use tests of divisibility for multiples of 7 and 8 and review all others.
	Written Strategies	- Recognise and use a number sentence to show written division (eg. $24 \div 3=8$).	- Recognise and use 3 different ways of expressing written division (eg. $24 \div 3=8$ or in 'bus stop' form $3 \Gamma 24$ or as a fraction $24 / 3$) - Use the 'short division' written method to divide 2 or 3 digit numbers by a single-digit in a known multiplication table to leave solutions with and without remainders. - Use written division strategies to solve written problems in real-life situations. - Use knowledge of multiplication and division to	- Use the long division methods of 3 digits by 1 digit to leave a remainder.	- Choose an efficient strategy to solve problems (agility of understanding numbers and which strategy is most suitable). Learners may not be proficient in using all strategies but have a repertoire to choose from. - Use the long division written method of 4 digits by 1 digit to leave a remainder. - Use the long division written method of decimal to 2dp to leave a remainder. - Use the short division written method to divide

[^0]| | | test the reasonableness of solutions. (eg, 45 $\div 3=15$ so $15 \times 3=45$) | | 4 or 5 digit numbers.
 - Use the short division written method to divide 4 or 5 digit numbers and decimal numbers to 2dp. |
| :---: | :---: | :---: | :---: | :---: |
| Vocabulary | Operation Vocabulary:
 - repeated subtraction
 - share
 - equal sharing
 - times smaller
 - remainder = 'left over'
 - factors
 Process Vocabulary:
 - repeated subtraction
 - divisibility
 - inverse operation = opposite
 Tools and Models Vocabulary:
 - division fact families | Operation Vocabulary:
 - repeated subtraction
 - share
 - equal sharing
 - times smaller
 - remainder = 'left over'
 - factors
 Process Vocabulary:
 - repeated subtraction
 - divisibility
 - inverse operation = opposite
 Strategy Vocabulary:
 - 'short division' method =
 - 'Bus stop' method
 Tools and Models Vocabulary:
 - division fact families | Operation Vocabulary:
 - repeated subtraction
 - equal grouping - how many 'groups' can you make with....
 - equal sharing
 - times smaller
 - remainder = 'left over'
 - factors
 Process Vocabulary:
 - repeated subtraction
 - divisibility
 - inverse operation = opposite
 Strategy Vocabulary:
 - 'short division' method =
 - 'Bus stop' method
 - 'long division'
 Tools and Models Vocabulary:
 - Division fact families | Operation Vocabulary:
 - repeated subtraction
 - equal sharing
 - times smaller
 - remainder = 'left over'
 - factors
 Process Vocabulary:
 - repeated subtraction
 - divisibility
 - inverse operation = opposite
 - digit slide
 Strategy Vocabulary:
 - 'short division' method =
 - 'Bus stop' method
 Tools and Models Vocabulary:
 - Division fact families |
| Fractions | - Name fractions by their images and explain what the numerator and denominator represent as an image (eg. ...out of....).
 - Understand how a whole can be represented in numbers and pictures (eg. 5/5, 8/8 = 1 whole).
 - Demonstrate an understanding by shading any proper fraction. (eg. $1 / 8,1 / 2,2 / 3,3 / 4,7 / 8$, 1/10).
 - Order unitary fractions $(1 / 2,1 / 3,1 / 8)$ on a number line.
 - Order common fractions (ie. half, quarters and eighths) on a number line (up to 1).
 - Compare fractions with the same denominator using pictures and/or fraction wall (eg $1 / 4,2 / 4,3 / 4,1$, etc.).
 - Use manipulatives to demonstrate $1 / 2,1 / 3,1 / 4$, $1 / 8$ of a group.
 - Compare, order and explain $1 / 2,1 / 3,1 / 4,1 / 8$ using visual representation as needed. | - Show understanding of fractions by drawing and shading a fraction without a given template.
 - Compare, order and explain 'common proper 'fractions with different denominators using pictures. (eg. $1 / 8,1 / 5,1 / 2,3 / 4,7 / 8$)
 - Understand and explain what an improper fraction represents in numbers, words and images.
 - Add and subtract simple fractions with the same denominators using images. (eg. 1/5 $+3 / 5$)
 - Create an image of fractions to introduce the concept of equivalent fractions (eg. $1 / 2=2 / 4$).
 - Use and explain visual and written methods of finding fractional parts of whole a
 - group (eg, $1 / 3$ of 24 and $2 / 3$ of 24).
 Application:
 - Find unitary fractional parts of quantities when using measurements (eg. $1 / 4$ of 800 g =)
 - Convert fractional parts of an hour to minutes when solving time problems. | - Count forwards and backwards in steps of $1 / 2$, 1/4 1/10,
 - Recognise and create equivalent fractions (including $1 / 10$ s, $1 / 100$ s in preparation for percentages, eg: 10/50 $=20 / 100$)
 - Compare two fractions by finding a common denominator e.g. $3 / 5$ and $7 / 10$
 - Order a set of fractions with 2 different denominators e.g. 4/5, 2/10, 5/10 1/5
 - Convert an improper fraction to a mixed number and vice versa.
 - Find a fraction of a set number when solving problems e.g. finding $2 / 3$ of 42
 - Place fractions on a number line (up to and beyond 1, eg: 8/5)
 - Add two fractions where one denominator is a multiple of the other e.g. $1 / 2+1 / 4$
 - Draw decimal fractions on 100 square and in 10 strips
 - Convert fractions with 10 ths and 100ths to decimal numbers
 - Recall that quarter $=0.25$ and $3 / 4=0.75$
 - Recognise the percent symbol (\%) and understand that per cent relates to 'number of parts per hundred',
 - Write percentages as a fraction with denominator of 100, and as a decimal.
 - Find simple percentages $(10 \%, 50 \%)$ | - Count forwards and backwards in fractions of tenths, fifths, quarters, thirds. (eg. 1/4, 2/4, 3/4, 1,5/4). (PF)
 - Say the number $1 / 10$ more, $1 / 10$ less. (PF)
 - Say the number $1 / 100$ more, $1 / 100$ less. (PF)
 - Find equivalent fractions by identifying a common denominator up to hundredths.
 - Order fractions by finding a common multiple as the denominator (eg. $3 / 10,4 / 5,5 / 20$, 40/100)
 - Add \& subtract fractions of common denominators.
 - Recall conversions between decimals, fractions and percentages with $1 / 2,1 / 4,1 / 3$, $1 / 5$ and $1 / 10$.
 - Find fractions of sets (eg. 4/9 of 54).
 - Convert complex fractions to decimals ($1 / 7$, $1 / 8$) using division strategies.
 - Convert simple fractions to percentages by finding equivalent fractions.
 - Find percentages of numbers (eg. 80% of 45).
 - Application:
 - Use the most appropriate fraction (mixed or improper) when responding to problem solving questions. |
| Vocabulary | - fraction
 - unit fraction (numerator $=1$)
 - numerator
 - denominator
 - fractional part or a quantity | - fraction
 - unit fraction (numerator $=1$)
 - numerator
 - denominator
 - fractional part or a quantity | - fraction
 - unit fraction (numerator $=1$)
 - numerator
 - denominator
 - fractional part or a quantity
 - equivalent fractions | - fraction
 - unit fraction (numerator $=1$)
 - numerator
 - denominator
 - fractional part or a quantity
 - equivalent fractions |

		- equivalent fractions - out of - part/whole	- equivalent fractions - equivalence - out of - quantity / groups/ set	- equivalence - out of - common denominator - improper - mixed number - percent - percentage	- equivalence - common denominator - part whole - part(s) of - out of
Place Value of Decimals		- Understand that a decimal separates whole \$ from part of the dollar (cents). - Add and subtract decimals in real life situations involving money. - Compare the amount of money from the written form and through coins (eg. $\$ 0.50$. \$0.05). (All of these learning objectives fall under measurement for reporting purposes)			
Pattern and Function (see also P\&F-related to number)	Problem Solving Strategies		- Identifying key words in a question or statement. - Construct a number sentence. - Use a variety of mathematical language to describe operations and processes. - Distinguishing between relevant and irrelevant information in a question. - Understand, explain, use and apply the following strategies to assist problem solving: - 'Guess + Check' strategy. - drawing information given in a problem to assist with finding a solution. - use or create models to assist with solving problems. - work backwards through a problem. - use an example to assist with other similar types of problems. - use a chart or diagram to organise information. - Choose a suitable strategy to solve a problem. - Order number operation or steps within a multi-step problem. - Orally explain the processes used to solve the problem. - Check solutions for their reasonableness. - Use knowledge of the properties of numbers to check reasonableness of solutions (eg. odd and even rules when adding, subtracting of multiplying numbers)	- Identifying key words in a question or statement. - Construct a number sentence. - Use a variety of mathematical language to describe operations and processes. - Distinguishing between relevant and irrelevant information in a question. - Understand, explain, use and apply the following strategies to assist problem solving: - 'Guess + Check' strategy. - drawing information given in a problem to assist with finding a solution. - use or create models to assist with solving problems. - work backwards through a problem. - use an example to assist with other similar types of problems. - use a chart or diagram to organise information. - Choose a suitable strategy to solve a problem. - Order number operation or steps within a multi-step problem. - Orally explain the processes used to solve the problem. - Check solutions for their reasonableness. - Use knowledge of the properties of numbers to check reasonableness of solutions (eg. odd and even rules when adding, subtracting of multiplying numbers)	- Identifying key words in a question or statement. - Construct a number sentence. - Use a variety of mathematical language to describe operations and processes. - Distinguishing between relevant and irrelevant information in a question. - Understand, explain, use and apply the following strategies to assist problem solving: - 'Guess + Check' strategy. - drawing information given in a problem to assist with finding a solution. - use or create models to assist with solving problems. - work backwards through a problem. - use an example to assist with other similar types of problems. - use a chart or diagram to organise information. - Choose a suitable strategy to solve a problem. - Order number operation or steps within a multi-step problem. - Orally explain the processes used to solve the problem. - Check solutions for their reasonableness. - Use knowledge of the properties of numbers to check reasonableness of solutions (eg. odd and even rules when adding, subtracting of multiplying numbers)
Vocabulary			- estimate - approximate - predictions reasonable a quantity - calculations - model - solution	- estimate - approximate - predictions reasonable a quantity - calculations - model - solution	- estimate - approximate - predictions reasonable a quantity - calculations - model - solution

[^0]: Maths number Continuum - September 2023

